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The correct definition of differential operators and different mathematical objects
naturally requires the construction of functional spaces of their action and the study
of associated regularity problems. There is Cauchy-Liouville-Picard regularity scheme,
created initially for the study of regular dependence of solutions to differential equations
with respec: to the initial data and different kind parameters [1]-[4].

Let us briefly recall it in the adaptation to the simplest case of first order differential
equation on line

t
w(@) =2~ [ Flule))ds, (1)
0
where nonlinear drift F' has all bounded derivatives

3K, sup |[F"™(z)| < K,
zeR!

in particular it is Lipschitz

Vz,y € R' | |F(z) — F(y)| < Kilz - y|.

1. Cauchy-Liouville-Picard regularity scheme.

The application of fixed point techniques leads to the existence of solution to (1) via
iteration of

t
W) =z - [ Pl

After introduction of the implicit function

Feh=w-a Fly)ds =0, @)

the following estimate ||@, —1[| < ¢K; < ¢ gives for small ¢ the first order differentia-

bility with respect to the initiz. data 356;%(:1:) = —[®;])®’ . In a similar way the high

L

order differentiability on initial data E]ai-yt(:c) for small £ > 0 can be derived from
: z™ ,
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theorem on differentiability of implicit function. Finally, solution y:(z) is regular on
initial data for all ¢ > 0 due to the semigroup property of flow y:4s(z) = y:(ys(z)) .
For the associated semigroup (P;f)(z)=f(y¢(z)) the Cauchy-Liouville-Picard scheme
leads to the quasicontractive estimates on any order regularity || ;|| (cr)Sexp(t Mk, ,..k.)
in the standard spaces of continuously differentiable functions with bounded derivatives.
This scheme permits natural generalizations to the infinite dimensional space X . In
particular, the development of infinite dimensional analogies of the implicit function
techniques inspired the interpretation of variations as Frechet derivatives yin} (z) €
B, = L(X,B,_1), Bo = X and the study of semigroup in spaces of Frechet differen-
tiable functions. In a similar way the introduction of the concept of full metric space
and Browder index theorems were closely related with the fixed point results [1]-[4].

2. Nonlinear symmetries of variations.

What happens, however, for the essentially nonlinear equations? In this case the
derivatives F(™ become unbounded, so the fixed point arguments and implicit function
results become inapplicable. The traditional way to get round this difficulty uses some
Lipschitz approximations of the initial equation and applies certain a priori estimates
and imbedding theorems with the idea to recover the regularity of initial problem.

Unfortunately, there are counter-examples to the Cauchy-Liouville-Picard scheme [5],
that demonstrate the inapplicability of the Frechet topologies in the essentially nonlinear
case. Moreover, the modifications that account the influence of nonlinearity parameters
must be entered.

In this report we develop further the direct methods for the study of nonlinear differ-
ential equations. Some steps were already reported at conferences [6]-[9] in applications
to different finite and infinite dimensional problems.

We deal with the parabolic Cauchy problem

—qu(t, z) + Hu(t,z) =0 (3)
ot
in unbounded domain (¢,z) € IRy x IR"™, generated by operator
r=—impwisie kgl
= T PTG *) oz

with unbounded globally non-Lipschitz coefficients. In particular, to the problem (3)
corresponds a stochastic analogue of (1), the diffusion equation

t t
vi =2+ [ BODAW. - [ PR, )
0 0
that generates the solutions to (3) via Kolmogorov representation

u(t,z) = (exp(-tH)f)(z) = E f(y7),

IE denotes the expectation with respect to the Wiener measure.
Below we obtain any order regularity of semigroup exp(—tH) in terms of nonlinear
behaviour of drift F and diffusion B . Conditions on coefficients are



1. Coercitivity and dissipativity: VM 3Cu, K3}, K3, such that
< F(z) - F(y),2 —y > —~M||B(z) - B(y)llus > —~Cmlz — yI* (5)

< F(z),z > —M||B(z)|ls > ~Ku — Kylz|’

where || - ||gs denotes Hilbert-Schmidt norm of matrix. By [10]-[12] this condition
is necessary for the existence and uniqueness of solutions to (3)-(4). To achieve C>

properties of process y¥ we also need the following assumption: VYM;, M, 3K Vz,h €
Bﬂ

| < k,B'(z)[h]B*(z)z > |

< h,F'(z)[R] > —M1||B'(z)[R] ||}1s — M- 1+ |z

> —K|[h|*  (6)

where H'(z)[h] means derivative in direction h at point z.

2. Nonlinearity parameters: 3kp, kg, kp < kp/2 such that Vj 3K;
IF9(z) — FO(y)|| < Kjlz — yl(1 + || + Jy])* (7)

IB(2) ~ BO(w)]] < Ksle —yi(1 +1e] + ly)*= ™

Last conditions generalize the Lipschitz behaviour to the polynomial class, restriction
kp < kr/2 is natural in account of the coercitivity condition. In particular, (7) implies

IFU(z)| < K1+ |z))*,  [IBY(2)]| < Kj(1 + |z])*=. (7')

The idea lies in the backgrounds of variational calculus. Let us consider nonlinear
functional F(y) on state space Y and denote by d the derivative operation. Take n'"
order variation

d"F(y) = d" " (F'(y)dy) = F'(y)d"y + ¥ FO(y)dy..d”y + F™(y)[dy]"

Jji+..+js=n,8=2,n-1
(8)

The main observation is that the right hand side of (8) contains simultaneously n*"
variation d™y and first variation in nt* degree [dy]™ . Similar symmetry is also reflected
in the intermediate terms

dy..dy & [dy)*..[dy]* & [dy]® Dbecause ji+..4+j,=n (9)

and, moreover, is present for any order variation {d’F}j>: .
This symmetry has immediate consequences for the nonlinear evolutional equations
like (1), (4). For 7 = {j1,..-sJa} € {1,...,n}* consider the high order derivative 0, =

... of diffusion process y*
dz;, " Oz;y - P

t ‘ t
¥l = 8,47 = b, [r.hus. of (4)] =ind. + f 0, B(yf )dW; — / 0, F(y;)dt =
0 0
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—tnd'l'-/ Z B(“)(y ){yf‘,..,yt th / Z F{a)( )[yt y syt ]dt

MU Uye=T, a>1 NU.Uye=T1, 221
(10)
with summations of similar to (8) structure, H(®)(z)[hi, ..., h,] means a** order direc-
tional derivative at point z € IR".
For equation (10) variation y” in the Lh.s. is proportional to the first variation in
|7|** power in the r.h.s., or, in other words,

gyt o il (11)

Let us introduce the homogeneous with respect to this symmetry expression

Z EPM lyt ) - lly! ||m!!h| (12)

yCr

that, due to y; = 8,y7, reflects the regularity of solutions with respect to the initial
data. We demonstrate below that the knowledge of symmetry (11) is sufficient for
the study of regularity in the essentially non-Lipschitz case. In particular, there is a
hierarchy of weights {p} , determined by parameter kr that leads to quasi-contractive
a priori estimate on regularity [5]-[9].

3. Nonlinear estimate on variations.

THEOREM. Suppose conditions 1.,2. hold. Let polynomial weights p; > 1 fulfill
hierarchy

Vis 4t da=i [l (14 )™ < o (Wi (P, z€ Ry (19)

Then

IM: pr(y,t) = Y Eppy(l95]) 17 I™ < eMp,(y,0)
7Cr

Proof. The detail proof can be found in [13]-[16], here we outline how works symmetry
(11). Applying Ito formula to each term in (12) and separating the coercitive part we
have estimate [13,Lemma 3]

gv(t)=Ep17|(|yf|2)lly3!1m”"*597(0)*/0 E [Hpy (- P))wd) Il ™/ Mat+ - (15)

f Eppy(ly71?) lu? ™M= {= < 4], F'(7)[w7) > +(ﬁ — DIIB' (7)) s+

+2E’M < B'(y7)[w{1B* (v7)vi , y! >}dt+ (16)

[~]

t
m . _
7 [ B (W) I < 98,07 > 4 182 s+

!
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+2p"" < wBB (¥2)yZ,u) >}dt (17)
|l

where

v = o H® (y7)[ye o 98- (18)

ajU...Uags=7vy, a>2

For any polynomial p term with generator (15) may be estimated by dissipativity
assumption (5)
M, [Hp(|-’))(z) 2 —~Mpp(|z|*) Ve R

The application of condition ( ) and polynomiality of p: |[p/(2)|(1 + |z|) < Kp(z)
to (16) gives that (16) < const fo g~(t)dt .

Finally, symmetries (11) are used for the treatment of expressions in (17). Let us
demonstrate the estimation of first term. Using Holder inequality and non-Lipschitzness
(7) we obtain

s e f g(t)d+C" ) [ B (195 ) 1P 5 )i 97 ™ dt <

ajU.Ua,=vy,a2>2

<c [ g(t)dt+C" Y / E oy (19 P) (L4 )™/ ]l ™/ (19)

aiU..Uagz=~y,a>2 j=1

Using |ai| + ... + |@a| = |y| we apply hierarchy (13) and Hélder inequality with ¢; =
I¥l/lail, X5 gi =1 to get

o [ IEH (it () 1515t < comat 5 [t

aCy, |a|<]|

where, due to a > 2, in the last summation arise only the lower order terms.
The second term in (17) is estimated in a similar way with the help of (7). Using tha.t

7| B lyz | B f
v B* < ) B(0 d,\ B A <
- ==} (w)vill < T tzl-,H s - Il Ayl <

<(IBO)II+ sup [IB'Ow)I) - [[¥F1las < C(1+ w7 )" 1127
A€[0,1]
and 2kp < kr we estimate the third term in (17).
Induction on |y| in expression p, (12) finishes the proof.

4. High order differentiability of yf with respect to the initial data.

In a similar way nonlinear symmetries (11) permits to construct variational processes
y¢{ as solutions to the non-autonomous inhomogeneous with respect to y; problem (10)
and prove their continuous in mean dependence on z € IR™ [13].

7



In particular, under conditions (5)-(7) we have C -differentiability in mean of pro-
cess ¢ [13,Th.7]. This property again exploits symmetries (11): Using representation
(10) we have

y7 (¢ + se:) —yi(=) YTVt () = /‘ OB ()W, — f‘ oF (¢)dt (20)
0 0
with
OH(¢) = 3 %H @ (g7 o) [y (z + Sex), - 47° (z + Sei)] EE*
MU Uye=T, a>1
- S H®(9)[y7 (2) -, 35 (2)]

a1U...Uap=1U{k}, b>1
By D(y)—-D(z) =D'(Z)[y—z] + fol(D’(f-i- Uy—7))—D'(Z))[y— z)d¢, function ©
can be transformed further to the form
r+cey

07 (e) = ZH(”(yf_)[y‘t”’“‘e—‘“_'ﬁ — 4 (@), 4 (2), ¥ ()4

(SJ' 5;,-'
Tz +cer) — T U{k
+ Y HO (40 (2), s ( ;‘) v (=) _ otk o) Ll (@) + rest terms

(21)
Therefore, during estimation of differences in (20), one comes to the same structure
differences of lower order in (21). Furthermore, symmetry (11) works again for terms
(21). In particular, it is also present in the rest terms in (21), resulting in the C*
properties of yf with respect to the initial data.

5. Regular properties of parabolic problem (3).

It can be proved that the strong continuity in time of solutions exp(—tH)f fails to
hold in the topologies of continuous differentiability. Thus analytic techniques do not
. work, nevertheless one may use Kolmogorov representation (exp(—tH)f)(z) = Ef(y7).
By direct differentiation

0 (exp(—tH)f)(z) = 6-FE f(y;) = E - f(y;) = by (3) =

= > E f* ()", - 9]

TU.Uye=T, a2>1
Here variations represent some kind of convolutional kernels that relate differentiability
of initial data f(0,z) with its evolution f(t,z) = (exp(—tH)f)(z) . Nonlinear estimate
on p, makes the rest and one has result about regular properties.
THEOREM. Under conditions (5)-(7) the diffusion process yy is C° -differentiable in
mean with respect to the initial data = € R™.
For a family of polynomial weights {g; € C*°(IR') } ;>0 , hierarchied by

Vi>0 gi(2)(1+2))* < gj+a(2), (22)
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and any m € IN the semigroup e *H

functions C7*(IR")

preserves the space of continuously differentiable

ve>0 e”H OP(B") - CP(RY), 3Cm,Km lle”*||nicp) < Cme'™

topologized with norm

||f||c:m = sup sup |07 f(‘”)]

|7|<m z€R" Q|rl(|$|2) ' (29

Proof may be found in [13],[14],[16].

6. The raise of regularity of initial function via stochastic calculus of varia-
tions.

In this part we discuss a new class of nonlinear estimates on variations, that lead to
the raise of smoothness properties for solutions of (3)

Vi>0 exp(—tH):C" — Ccni™ w0

We use the dependence of diffusion process y7 = y¥(w) (4) on the random parameter
w , defined on the Wiener space w = {w¢}:>0 € @ = Co(IR+,IR"), index 0 means that
w(0) =0.

The introduction of differential structure on Wiener space is a subject of Malliavin
calculus [17]-[19]. For example, the continuous function F :  — IR' is stochastically
differentiable iff for any bounded adapted continuous process us(w) exists a limit

DuF(UJ) = lim F(wt) B F(w)

e—0 £

, we(t) =w(t)+ 6-/; us(w)ds (24)

in any L?(Q,P) space, p € (1,0), P denotes Wiener measure.
The stochastic can be calculated for different objects, for example

m t t
Duf(Fiyeer Fm) =Y 8; f(Fi,..e; Fro) Do Fj By / a,ds = f (Dya,)ds  (25)
i=1 0 g
t n - - n t - 3
D, Za’dW’ f Z(Duag)de—i-Z f aduids

0 3=1 j=1"0

so one can work with the stochastic derivatives of diffusion processes D,yy, Dyy; by
writing corresponding equations.

The importance of stochastic derivative may be expressed in the integration by parts
formula for Wiener measure: for stochastically differentiable functions F,G

EDuF-G=—EF-DuG+EFG-/ u dW, (26)
i]

therefore Wiener integral represents a dual stochastic gradient, acting on unit D;1 =
[ u dWs .
0 Usg 8



From (25)-(26) may be obtained different representations of semigroup derivative
[17]-[20], like

o 3 g v

52 (exp(—t)N)(2) = Ef47) {F [ waWi-DuFon
or similar with the Malliavin determinant, that lead to the raise of smoothness prop-
erties: for integrable expression in brackets {...} from continuity of f follows C*!
differentiability of semigroup flow exp(—tH)f in the Lh.s. for any ¢ > 0, i.e. the raise
of smoothness.

Unfortunetely, because (1/z)’ = —1/z> changes the sign, the coercitivity and dis-
sipativity assumptions are violated for the fraction 1/D,yf and representations (27)
become singular in the essentially nonlinear case. Therefore the research in the Malliavin
calculus was mainly concentrated on the Lipschitz classes of diffusions, that naturally
arise, for example, on the compact manifolds.

The solution of singularities was found in [8], [20], it exploits that field » in (27) is a

(1)

14
D.y7
In particular, it becomes possible to provide the high order analogies to (27):

free parameter and one can find % such that fraction

transforms to factor 1/¢.

THEOREM [20]. Let ¥, = B~1(y¥)d,y? for directional derivative 8, =< v,é%- >
, v € R™. Then
Dy, f(&) =18 f(£7),

for f € C’;M(IR“) of polynomial behaviour with derivatives. Moreover, the high order

raise of smoothness representations hold

By, .00, [exp(—tH)f](z) = ;;Ef(yf)l“m...l",,jl (28)

Operator I',, is defined on differentiable functions on IR™ x ) by formula
t
Tyh(t,z,w) = {t0, — Dg,», + / Vv - dWith(t, z,w). (29)
0

From representations (28)-(29) follows that the verification of the differentiability
property requires estimates on the mixed derivatives {07,Dy,,} of process y7 .

The nonlinear quasi-contractive estimates on the pure derivatives with respect to the
initial data 07 of process yy were already obtained in previous sections. Because
by chain rule (25) the stochastic variation Dy,, represents derivation operation, the
nonlinear symmetries (9), (11) arise again. Direct calculations [15] lead to the new

symmetries
DPy& Pl MIBlye r 4Bl (1))lal+IAl

where we introduced notation D7 = Dg,,; and DP = D= ...D* for B ={j1,. Ja}-
Similarly, a certain hierarchy of weights leads to the nonlinear estimate on mixed
derivatives Dy = {8, D*}
Dy,...Dyg,

I
prst) = Y Epap(lyfl?) || =2 tadt |mlal+ifl < Mip (y,0),
ol t18|
[# 4 T
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for a UB = {ki,....,k}. Via representations (28) this estimate implies the raise of
smoothness property:
THEOREM. Under conditions (5)-(7) the process y; and its variations y, are stochas-
tically differentiable.

Suppose that diffusion coefficient is uniformly invertable 3IK:Ve € R"||B~Yz)||gs<K.
Then for any continuous function f € Cpoi(IR™) of no more than polynomial behaviour

the evolution exp(—tH)f € C;5,(IR™) represents C'* -smooth function of no more than

polynomial behaviour with derivatives.
Moreover, for any polynomial go € Cpoi(IR4+) such that

£ ()]

lim sup ——F— 57 = 0
R—oe | 1z|I>R go(|z|?)

the smoothing estimate holds

K, etMm

lexp(—tH)f|lcp(rr) < ~— T

[ fllcg (mm) (30).

The spaces C7' are constructed like in (23) with hierarchy (22), generated by function

9o -

Proof may be found in [13], [16]. We remark finally that restriction of uniform
invertability of B can be weakened to the polynomial estimate ||B~!(z)||gs < K(1 +
|z[)¢. In this case the hierarchies of topologies C7(IR™) in the raise of smoothness

estimates should be generated by factors (1 + |z|)*#+¢.
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